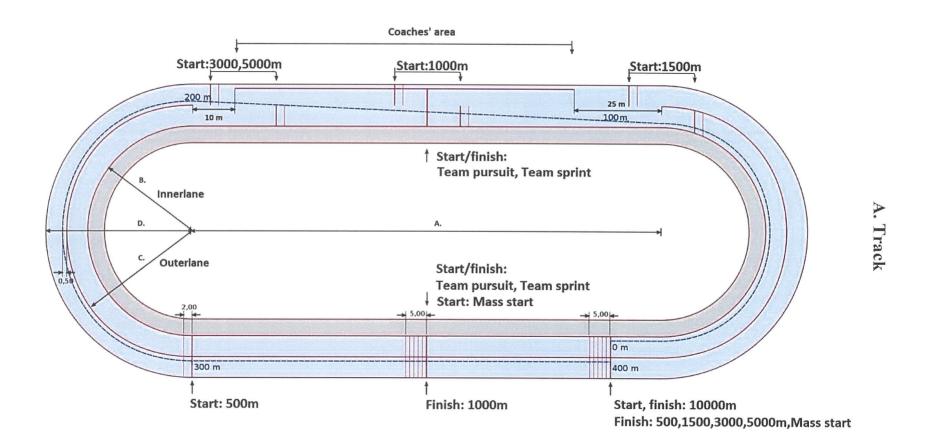
アイススケートリンクについて


1. 使用目的による分類

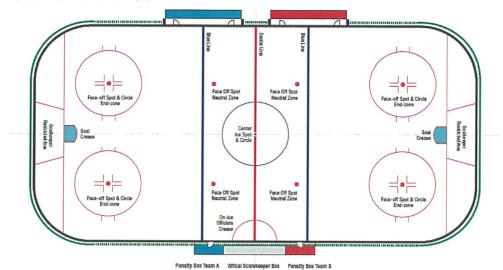
設置場所は、屋内、屋外

競技種類	リンクサイズの規格	リンクサイズ	その他
a.スピードスケート	ISU規則	滑走距離:400m	図面参照
		333.33m	
b.アイスホッケー	IIHF規則	長さ:60m	NHL規則有
		巾 :25m~30m	図面参照
c.フィギュアスケート	ISU規則	長さ:56m~60m	60mが望ましい
		巾 :26m~30m	30mが望ましい
d.カーリング	WCF、JCA規則	長さ:45.72m (1シート)	図面参照
		巾 :5m	
e.ショートトラックスピードスケート	ISU規則	長さ:60m以上	屋内
		巾 :30m以上	
		トラック: 111.2m	
f.遊戯リンク	なし		

2. 冷却方式

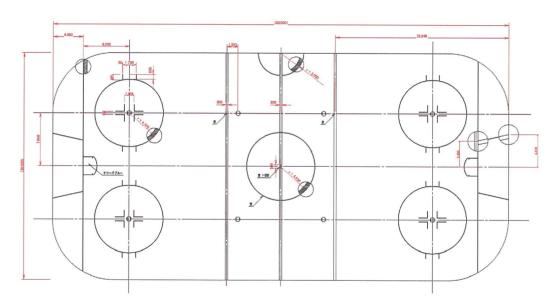
	冷却管敷設方式	冷却管種類	流体の種類
a.間接式(プライン方式)	①固定式	鋼管埋設	塩化カルシウム水溶液
		ポリエチレン管コンクリート埋設	エチレングリコール水溶液
		ポリエチレン管砂埋設	
		小口径樹脂管	
		アルミ扁平管	液体CO2
		ポリエチレン被覆銅管	
	②解体組立式	小口径樹脂管	塩化カルシウム水溶液
		ポリエチレン管	エチレングリコール水溶液
b.直接式(直膨式)	①固定式	高圧用鋼管、銅管	液体CO2

Example of Standard Speed Skating Tracks

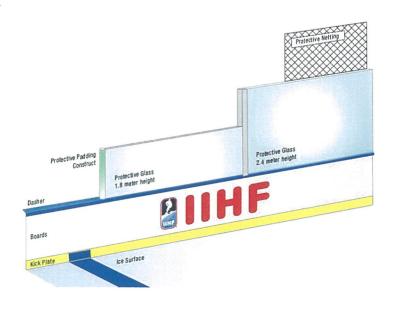

1 = 2 x mean axis = 2 x A 3 = Outer Curve = C x
$$\pi$$

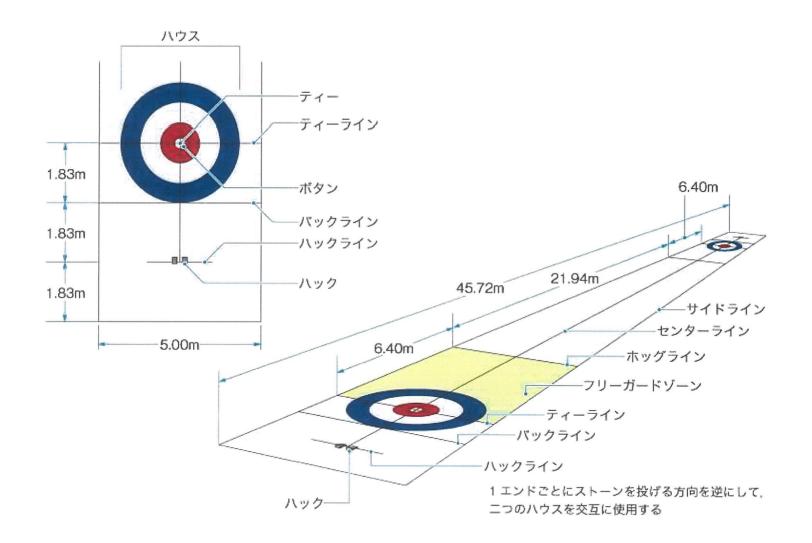
2 = Inner Curve = B x π 4 = Crossing = $\sqrt{A^2 + (\text{width of track})^2} - A$

400 m Tracks					
Radius inner curve		25 m	Radius inner curve		25.5 m
Width of each track		4 m	Width of each track		4 m
$1 = 2 \times 113.57$	=	227.14 m	$1 = 2 \times 112.00$		224.00 m
$2 = 25.5 \times 3.1416$		80.11 m	$2 = 26 \times 3.1416$	=	81.68 m
$3 = 29.5 \times 3.1416$	=	92.68 m	$3 = 30 \times 3.1416$	=	94.25 m
$4 = \sqrt{113.57^2 + 4^2} - 113.57$		0.07 m	$4 = \sqrt{112^2 + 4^2} - 112$	=	0.07 m
		400.0 m		-	400.0 m
Radius inner curve	19.40 E019-0010.01491.0	26 m			
Width of each track		4 m			
$1 = 2 \times 110.43$	=	220.86 m			
$2 = 26.5 \times 3.1416$	=	83.25 m			
$3 = 30.5 \times 3.1416$		95.82 m			
$4 = \sqrt{110.43^2 + 4^2} - 110.43$	PERSONAL PROPERTY AND ADDRESS OF THE PERSONAL PR	0.07 m			
		400.0 m			


333 1/3 m Tracks					-1.71-25
Radius inner curve		26 m	Radius inner curve		25 m
Width of each track		4 m	Width of each track		4 m
$1 = 2 \times 77.08$	==	154.16 m	$1 = 2 \times 80.22$	=	160.44 m
$2 = 26.5 \times 3.1416$	=	83.25 m	$2 = 25.5 \times 3.1416$	=	80.11 m
$3 = 30.5 \times 3.1416$	==	95.82 m	$3 = 29.5 \times 3.1416$	=	92.68 m
$4 = \sqrt{77.08^2 + 4^2} - 77.08$		0.10 m	$4 = \sqrt{80.22^2 + 4^2} - 80.22$	=	0.10 m
		333.33 m		alvikala kirk Kornyrekoonskunsek	333.33 m

アイスホッケーリンク (フィギュア、ショートトラック競技もこのサイズを使用)

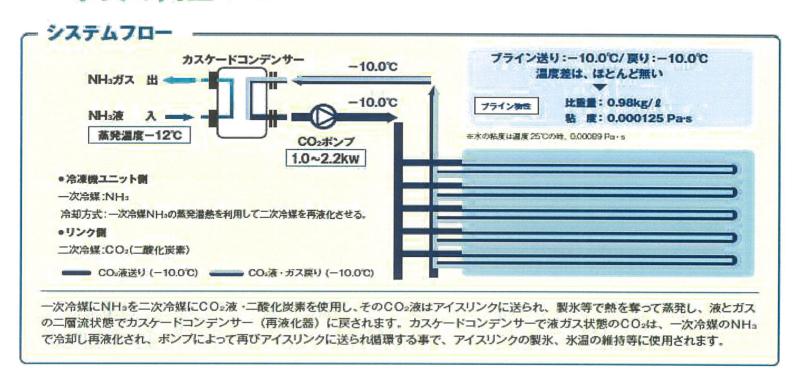

① アイスホッケーリンクライン図



② アイスホッケーリンク寸法図

③ リンクフェンス

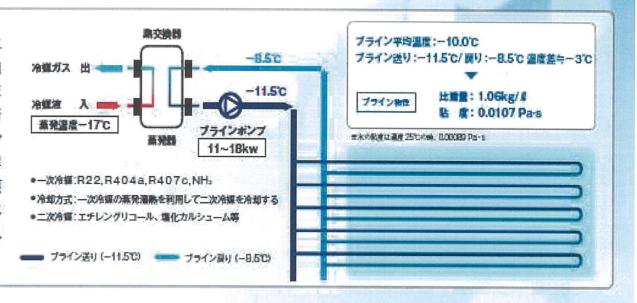
		r	1	, , , , , , , , , , , , , , , , , , ,		-	
	A. 小口径樹脂管 露出工法	B. 小口径樹脂管 砂埋設工法	C. 大口径長尺鋼管 コンクリート埋設工法	D. 架橋ポリエチレン管 砂埋股工法	E. 架橋ポリエチレン管 コンクリート埋設工法	F. 被覆銅管 コンクリート埋設工法	G. アルミフラットパネル 砂埋設工法
標準断面図	冷却管(小口径樹脂管) 20mm リンク水 リンク水 リンク水 のののののののののののののののののののののののののののののののののののの				冷却管(架橋ボリ管) 20mm リンク水 メント コンクリート層	が記憶(被覆網管) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	
冷 却 管	外径9.5mm(5 配管ビッチ サブヘッダーを介して	5共東会)樹脂管 9mm)・内径7mm 40mm (20mm) :プライン主配管へ接続 150A~200A	長尺炭素鋼鋼管 25A又は32A 配管ビッチ 80mm~100mm アラい主配管へ直接接続(溶接) アラい主配管へ直接接続(溶接)	ポリエチレン単管 16A又は25A 配管ビッチ 50mm~80mm プライン主配管へ直接接続(専用継手) プライン主配管 250A~300A	ポリエチレン単管 16A 配管ピッチ 60mm ブラ化主配管へ直接接続(専用継手) ブラ化主管 250A~300A	被理解管	アルミフラットパネル 5mm×48mm 多穴 設置ビッチ 120mm サブヘッダーへ接続 CO2主管 SUS製 65~150A
2次媒体の種類		w	エチレングリコール系水溶液		1 77722 2001 0001	602	1 000 TO 1001
冷却管出入口温度差			2~3°C			0°C	
	0	Ο	Δ	0	Ι Δ	0	0
		 	コンケリートは蓄熱源となるが、プラクン量が	冷却管が直接氷を冷却する為、氷面の	コンケリートは蓄熱源となるが、プライン量が	コンクリートは蓄熱源となる。CO2冷媒の蒸発潜熱	C02冷媒が直接氷を冷却する。
氷温管理		ての応答が速い	多く、コンクリートを介しているため負荷に	温度調整は迅速に行える	多く、コンクリートを介しているため負荷に	により冷却効率が高い、コンクリートを	A~Gの中で冷却効率は最も優れる
		T	対しての応答が若干遅い	負荷に対しての応答は小口径よりも優れる	対しての応答が若干遅い	介しているため、応答はGより若干遅い	
夏季床面の利用	0	Δ	Ø .	Δ	0	0	Δ
床塗装	Δ ·	×	0	×	0	×	0
制御の応答性	0	0	Δ	0	Δ	0	0
送液ポンプ能力	1	1 (基準)	1, 3	1,3	1.3	0. 01	0.01
ランニングコスト	1	1 (基準)	1.1	1.1	1.2	0.6	0, 5
初期イニシャルコスト	0. 98	1 (基準)	1. 2	0. 9	1.0	1.4	1, 35
氷 質	Δ	0	0	Δ	0	0	©
	紫外線の影響が殆ど無い屋内で、	紫外線の影響が殆ど無い屋内で、	コンクリートに埋設されている為、	一般的に20年程度	コンクリートに埋設されている為、	コンクリートに埋設されている為、	一般的に20年程度
T1014	通年営業の場合、15~20年程度	通年営業の場合、15~20年程度	耐久性は高い。		耐久性は高い。	耐久性は高い。	A LOAD LINE WAS IMPOUNDED.
耐久性	水厚が薄くなった場合、スケート靴等で冷却管を	冷却管は砂層に埋設されており、	コンクリートにクラックが入ったり、大地震の際に		コンケリートにクラックが入ったり、大地震の際に	コンケリートにクラッケが入ったり、大地震の際に	冷却管は砂層に埋設されており、
	傷付け、プラクを流出させる恐れがある	外部からの損傷の可能性は低い	冷却管が破損する恐れ有り	外部からの損傷の可能性は低い	冷却管が破損する恐れ有り	冷却管が破損する恐れ有り	外部からの損傷の可能性は低い
	漏洩箇所の発見は容易である	漏洩箇所の発見は容易である	埋設により漏洩箇所の発見が困難	漏洩箇所の発見は容易である 20 440	埋設により漏洩箇所の発見が困難	埋設により漏洩箇所の発見が困難	漏洩箇所の発見は容易である
氷の厚さ	80тт	50~60mm (砂層含む)	25~50mm	80~110㎜ (砂層含む)	25∼50mm	25∼50mm	50~60mm (砂層含む)
氷の強度	0	0	0	0	0	0	0
	新横浜スケートセンター(横浜市)	ビッグハット(長野県 五輪開催リンク)	帯広の森スピードスケート場(北海道)		妹背牛町カーリングホール(北海道)	軽井沢アイスパーク (長野県)	ひょうご西宮アイスアリーナ(兵庫県)
施工事例	東伏見7イスアリーナ(東京都)	アクアウイング(長野祭 五輪開催リンク)	M-WAVE(長野県 五輪開催リンケ)		道立サンピラーパーウカーリングホール(北海道)	常呂町カーリングホール(北海道)	新潟市アイスアリーナ(新潟県)
	豊橋総合スポーツ公園(豊橋市)	中京大学(愛知県豊田市)	釧路市柳町スビードスケート場(北海道)		どうぎんカーリングスタジアム(北海道)	安平町スポーウセンターアイスアリーナ(北海道)	埼玉アイスアリーナ(埼玉県)
	クリスタルパーク恵那スケート場(岐阜県)	アクアリンクちば (千葉市)	岡谷市国際スケートセンター(長野県)		苫小牧市新ときわスケートセンター(北海道)		盛岡市アイスリンク(岩手県)
	風越公園屋外スケートリンク(長野県)	浪速スポーツセンター(大阪府)	沼ノ端スケートセンター(北海道)				
	氷質面で右記2方式に比べて若干劣るが	コンクリート埋設方式と同等な	コイル状のパイプを直管に矯正する	施工実績は無い	シーズン営業での夏季利用に適した	省エネ効果の高いCO2 二次冷媒。	省エネ効果の高いCO2 二次冷媒。
521 FT	採用実績は本方式が一番多い	氷質になる	矯直機の新たな製作が必要なため		コンクリート床である。		氷中埋設により一番効率が高い。
評価	解体・組立方式のリンクに最適		初期のコストが増大する		シーズン営業では初期コストが安価	CO2の温度が一定になるため	002の温度が一定になるため
							氷表面温度が均一になる


注意:施設の規模により比較割合が変わります。また、使用条件や環境条件により冷却負荷は大きく変わります。

CO2給液・二酸化炭素(新冷却システム)

従来式 (ブライン循環) の問題点を全て解決した冷却方式です。

- CO₂液の気化熱を利用して冷却温度を高くし、省エネを実現!
- ポンプ動力が従来の1/10!
- 氷表面温度が液化CO₂の入口~出口で温度が均一なので、氷質の向上が可能!



ブライン循環(従来冷却システム)

- ポンプ動力が CO₂方式よりも大きい
- 低温のブラインが必要なため、冷凍機の蒸発温度が下がり、COPは小さくなる
- リンク内のブライン循環が停止すると、ブラインの熱容量が小さいため氷温の上昇が早い
- ブライン入口側~出口側に温度差が生じるため、リンク全体の温度が不均一になる

システムフロー

一次冷媒にフロン、NHs等を、二次冷媒にエチレングリコール、塩化カルシューム溶液等を使用します。二次冷媒は冷凍機によって所定の温度まで冷却されてアイスリンクに送られます。製氷等で熱を奪い温まったブラインは冷却器に戻り、所定の温度まで再度冷却され循環する事で、アイスリンクの製氷、氷温の維持等に使用されます。

スケートリンクの年間の電気料金試算 (kWh/m2・月) (通年アイスホッケーリンクの実績より)

リンク面積:30m×60m アイスホッケー(1.800m2)

	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
CO2方式	21	31	40	48	48	35	30	22	17	16	15	18
ブライン方式	48	57	72	77	79	77	70	60	42	40	39	40

※CO2方式のリンクは関東圏内某所

上記の表より年間の電気料金を試算

東北電力

契約メニュー: 高圧 業務用電力(契約電力500kW未満)

基本料金:1,661円/kWh·月

電力量料金 夏季 16.82 円/kWh

その他季 15.62 円/kWh

試算の結果

CO2方式	9,870,516 円	※基本料金、燃料調整額、再生可能エネルギー発電促進賦課金は含みません
ブライン方式	20,212,596 円	

年間の電気料金の差額は、 10,342,080 円

冷却システム概要

当施設のリンク部製氷はアンモニア(NH3)/炭酸ガス(CO2)システムで運用されております。 NH3冷媒の冷凍機によりCO2を液化、リンクの下部にはアルミ冷却管が通っており、この冷却管に CO2が流れることにより、リンクを冷却します。 また、リンク部のコンクリート層の下には温ブラインが流れており、床部の凍上を防止します。

機器配置イメージ 氷上整備車への温水供給 機械室2 屋外 純水装置 リンクへの散水 温水兼散水タンク メインリンク CO2ガス 温水ヒータ センサー (ピット内) CO2レシーバ 機械室1 # # 漏洩 監視盤 密閉式冷却塔 サブリンク 0 0 0 事務室

監視盤

◎アルミ冷却管を傷つけないようにしてください。また、ピット内のヘッダー配管周りを歩かないでください。

NH3/CO2冷凍機

温ブラインタンク

動力制御盤

- ◎温ブラインのヘッダーやパイプにみだりに触れないようにしてください。
- ◎レシーバーピットに入る際はヘルメット及び保護具を着用してください。

温ブライン

◎各機器・用具類については取扱説明書をご参照ください。

- CO2系統

系統図を簡略化したものです。実際の位置関係やフローとは異なります。

- ブライン系統

機械室1

A STATE OF THE PARTY OF THE PAR			
1	冷凍機ユニット	3基	CO2を冷却して液化します。
2	CO2レシーバーユニット	1組	液化されたCO2を溜めて、リンクの冷却管へ送ります。
3	温ブラインタンク	1基	リンク下の凍上防止管へ送る温ブラインを溜めます。
4	アンモニア除害設備	1基	NH3やCO2が漏洩した際、中和または屋外排出します。
5	CO2ガス漏洩監視盤	1基	ピット内に漏洩したCO2を検知します。
6	動力制御盤	1面	冷却システムの制御を行ないます。

機械室2

7	温水兼散水タンク	1基	リンクへの散水または氷上整備車へ搭載する温水を溜めます。
(8)	純水装置	1組	市水を純水に処理します。

屋外

(9)	ガス炊き温水ヒーター	1基	温水兼散水タンクの水を昇温します。
10	冷却塔	1基	冷凍機ユニットを冷却します。

事務室

11	F仁 7月 舟公	1.55	1、4の制业性に発力を加工士士
111	監視盤	1 面	リンクの製氷状況等を監視します。

その他

(12)	手動混合弁	2箇所	リンク散水、ペブリング用温水の供給バルブです。
(3)	手動混合弁	1箇所	氷上整備車搭載用温水の供給バルブです。

アンモニアや炭酸ガスが漏洩したときは

◆アンモニア(NH3)が漏洩した場合 冷凍機ケーシング内のセンサーがNH3を検知すると、冷凍機ケーシングの排気ファンが停止しケーシング から外部へNH3が漏洩しない仕組みになっています。NH3はダクトを経由してスクラバーへ送られて中和 され建物外部へ放出されます。

◆炭酸ガス(CO2)が漏洩した場合 機械室内ピット、配管ピットのセンサーがCO2を検知すると、ダクトを経由してスクラバーファンによりCO2が 建物外部へ放出されます。

添付資料:CO2方式のアイスリンク施工実績

年 度	名称	リンクの大きさ
平成25年	軽井沢アイスパーク 殿	カーリング専用 30m×45.72m
	ひょうご西宮アイスアリーナ 殿	30m × 60m, 10m × 30m
	アドヴィックス常呂カーリングホール 殿	カーリング専用 30m×45.72m
	新潟市アイスアリーナ 殿	30m × 60m, 14.5m × 45m
平成26年	埼玉アイスアリーナ 殿	30m × 60m, 16m × 46m
平成27年	盛岡市アイスリンク 殿	30m × 60m、10m × 45,72m
平成28年	安平町スポーツセンター 殿	30m × 60m
平成29年	室蘭市中島スポーツセンター 殿	28m × 60m
令和元年	八戸市長根屋内スケート場 殿	16m × 400m, 16m × 16m
令和元年	京都宇治アイスアリーナ 殿	30m × 60m, 18m × 46m

添付資料:CO2方式のアイスリンク施工実績

年 度	名称	リンクの大きさ
令和2年	稚内みどりパークカーリング場 殿	カーリング専用 20m×45.72m
令和2年	北見カーリングホール 殿	カーリング専用 14.25m×45.72m
令和2年	南船橋アイスアリーナ 殿	30m × 60m, 24m × 38m